19. A bag contains 6 white balls and 9 black balls 4 balls are drawn at random. Find the probability that two are white and two are black.
20. A continours random variable X has a p. d. f. $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find a and b s.t.
(i) $\mathrm{P}[\mathrm{X} \leq a]=\mathrm{P}[\mathrm{X}>a]$
(ii) $\mathrm{P}[\mathrm{X}>b]=0.05$
21. Show that for triangular distribution with density function:

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
2-x & 1 \leq x \leq 2
\end{array}\right.
$$

$\mu_{1}=1, \mu_{2}=\frac{1}{6}$.
22. Fit a straight line of the following data treating y as the dependent variable :

x	y
1	5
2	7
3	9
4	10
5	11

H-2207

M. A./M. Sc. (Final)

Term End Examination, June-July, 2017 MATHEMATICS

Paper Third
(Mathematical Statistics)
Time : Three Hours]
[Maximum Marks : 70
[Minimum Pass Marks : 28

Instructions for Candidate :

Section-A : Question Nos. 01 to 08 are very short answer type questions. Attempt all questions. Each question carries 01 mark. Answer each of these questions in 1 or 2 words/ 1 sentence.
Section-B : Question Nos. 09 to 14 are very short answer type questions. Attempt any four questions. Each question carries $2 \frac{1}{2}$ marks. Answer each of these questions in about 75 words.
Section-C : Question Nos. 15 to 18 are short answer type questions. Attempt any three questions. Each question carries 05 marks. Answer each of these questions in about 150 words.

Section-D : Question Nos. 19 to 22 are half long answer type questions. Attempt any two questions. Each question carries 10 marks. Answer each of these questions in about $\mathbf{3 0 0}$ words.
Section-E : Question Nos. 23 and 24 are long answer type questions. Attempt any one question. Each question carries 17 marks. Answer each of these questions in about $\mathbf{7 0 0}$ words.

Section-A

1. Write the Geometric mean of $1,2,4$.
2. Write the formulae of coefficient of variation.
3. State addition theorem of probability.
4. Write the conditions of probability density function $f(x)$ for a continuous random variable.
5. If the range of the probability density function is from $-\infty$ to ∞ then, write r th moment about origin.
6. If $b_{y x}=.99$ and $b_{x y}=.85$, then what is value of coefficient of correlation?
7. What is value of $P(A)+P(\bar{A})$?
8. Define null hypothesis.
Section-B
9. For two variables x and y with same mean, the two regression equations are $y=a x+b$ and $x=\alpha y+\beta$ show that $\frac{b}{\beta}=\frac{1-a}{1-\alpha}$.
10. Prove that:

$$
\operatorname{Cov}\left(x_{2}, x_{1.23}\right)=\operatorname{Cov}\left(x_{3}, x_{1.23}\right)=0
$$

11. Prove that:

$$
\Delta \equiv \mathrm{E}-1
$$

12. Write a short note on "Sampling in statistics".
13. Out of 200 individuals 40% show a certain trait, and that the number expected on a certain theory in 50%. Find whether the number observed differs significantly from expectation.
14. A normal population has mean of 0.1 and a S. D. of 2.1. Find the probability that the mean of simple of 900 members will be negative.

Section-C

15. Write a short note on the choice of base period in the construction of an index number.
16. What is trend? How is it eliminated from a time series?
17. Calculate the Geometric mean of the following frequency distribution :

x	f
$0-10$	5
$10-20$	8
$20-30$	3
$30-40$	4

18. The first four moments about the points 4 are - 1.5, 17, -30 and 108. Then find the first four moments about the mean.

Section-E

23. (a) Calculate the coefficient of correlation between the values of x and y :

x	y
78	125
89	137
97	156
69	112
59	107
79	136
68	123
61	108

(b) Interpolate the missing term in the following table of rice cultivation :

Year	Acres (in millions)
1911	76.6
1912	78.7
1913	$?$
1914	77.7
1915	78.7
1916	$?$
1917	80.6
1918	77.6
1919	78.6

P.T. O.
24. Show that in a discrete series if the deviations x from the mean M are so small that the third and higher powers of $\frac{x}{M}$ and $\frac{\sigma}{M}$ can be neglected the following relative are found to hold approximately :
(i) $G=M\left[1-\frac{1}{2} \frac{\sigma^{2}}{M^{2}}\right]$
(ii) $M^{2}-G^{2}=\sigma^{2}$
(iii) $H=M\left[1-\frac{\sigma^{2}}{M^{2}}\right]$
(iv) $\mathrm{M}+\mathrm{H}=2 \mathrm{G}$

